Вариант № 3811

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 915
i

Точки A, B, C лежат на боль­шой окруж­но­сти сферы так, что тре­уголь­ник ABC  — рав­но­сто­рон­ний. Если AB  =  5 ко­рень из 6 , то пло­щадь сферы равна:



2
Задание № 755
i

Вы­чис­ли­те  дробь: чис­ли­тель: 5,6 в квад­ра­те минус 1,7 в квад­ра­те плюс 7,3 умно­жить на 2,1, зна­ме­на­тель: 6 конец дроби .



3
Задание № 442
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 4 ко­рень из 3 .


Ответ:

4
Задание № 930
i

Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да ABCDA1B1C1D1 равен 1728. Точка P лежит на бо­ко­вом ребре CC1 так, что CP : PC1 = 2 : 1. Через точку P, вер­ши­ну D и се­ре­ди­ну бо­ко­во­го ребра AA1 про­ве­де­на се­ку­щая плос­кость, ко­то­рая делит пря­мо­уголь­ный па­рал­ле­ле­пи­пед на две части. Най­ди­те объём боль­шей из ча­стей.


Ответ:

5
Задание № 877
i

Точки A, B, C раз­де­ли­ли окруж­ность так, что гра­дус­ные меры дуг AB, BC, CA в ука­зан­ном по­ряд­ке на­хо­дят­ся в от­но­ше­нии 9 : 5 : 4. Най­ди­те гра­дус­ную меру угла ABC.



6
Задание № 63
i

Сумма всех на­ту­раль­ных де­ли­те­лей числа 28 равна:



7
Задание № 7
i

Най­ди­те пло­щадь фи­гу­ры, изоб­ра­жен­ной на ри­сун­ке.



8
Задание № 364
i

Если 18% не­ко­то­ро­го числа равны 24, то 30% этого числа равны:



9
Задание № 910
i

Пря­мая a пе­ре­се­ка­ет плос­кость α в точке A и об­ра­зу­ет с плос­ко­стью угол 60°. Точка B лежит на пря­мой a, при­чем AB  =  8 ко­рень из 6 . Най­ди­те рас­сто­я­ние от точки B до плос­ко­сти α.



10
Задание № 246
i

Ве­ли­чи­ны a и b яв­ля­ют­ся прямо про­пор­ци­о­наль­ны­ми. Ис­поль­зуя дан­ные таб­ли­цы, най­ди­те не­из­вест­ное зна­че­ние ве­ли­чи­ны a.

 

a1,9
b1087,6


11
Задание № 183
i

Пря­мые a и b, пе­ре­се­ка­ясь, об­ра­зу­ют че­ты­ре угла. Из­вест­но, что сумма трех углов равна 210°. Най­ди­те гра­дус­ную меру мень­ше­го угла.



12
Задание № 395
i

Если 11x плюс 19=0, то 22x плюс 17 равно:



13
Задание № 553
i

Най­ди­те длину сред­ней линии пря­мо­уголь­ной тра­пе­ции с ост­рым углом 60°, у ко­то­рой боль­шая бо­ко­вая сто­ро­на и боль­шее ос­но­ва­ние равны 2.



14
Задание № 555
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства 3 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка боль­ше левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те .



15

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: |4x минус 10| минус |2x минус 14|, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка конец дроби мень­ше или равно 0.


Ответ:

16
Задание № 487
i

Ре­ши­те не­ра­вен­ство | минус x|\geqslant9.



17
Задание № 943
i

Со­кра­ти­те дробь  дробь: чис­ли­тель: x в квад­ра­те минус 121, зна­ме­на­тель: 2x в квад­ра­те минус 21x минус 11 конец дроби .



18
Задание № 505
i

Ре­ши­те урав­не­ние x в квад­ра­те минус 7x плюс 10= дробь: чис­ли­тель: 18, зна­ме­на­тель: x в квад­ра­те минус 5x плюс 4 конец дроби и най­ди­те сумму его кор­ней.


Ответ:

19
Задание № 232
i

Пусть (x1; y1), (x2; y2)  — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс 4x=15 плюс 3y,4x минус 3y=6. конец си­сте­мы .

Най­ди­те зна­че­ние вы­ра­же­ния x_1y_2 плюс x_2y_1.


Ответ:

20
Задание № 786
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром по­ка­за­но мно­же­ство ре­ше­ний си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний x\leqslant минус 2,5,2 минус 5x мень­ше 22. конец си­сте­мы .

1)  

2)  

3)  

4)  

5)  



21
Задание № 903
i

Ис­поль­зуя ри­су­нок, опре­де­ли­те вер­ное утвер­жде­ние и ука­жи­те его номер.



22
Задание № 1013
i

Най­ди­те зна­че­ние вы­ра­же­ния 12 умно­жить на левая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 3 ко­рень из 3 конец ар­гу­мен­та минус ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 49 ко­рень из 7 конец ар­гу­мен­та пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка ко­рень из 3 плюс ко­рень из 7 пра­вая круг­лая скоб­ка минус 6 ко­рень из: на­ча­ло ар­гу­мен­та: 21 конец ар­гу­мен­та .


Ответ:

23
Задание № 611
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 11 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс 3 ко­рень из 3 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс ко­рень из 3 конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та плюс дробь: чис­ли­тель: 16 ко­рень из 3 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та минус ко­рень из 3 конец дроби



24
Задание № 560
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка конец ар­гу­мен­та =0. В ответ за­пи­ши­те сумму его кор­ней (ко­рень, если он один).


Ответ:

25
Задание № 276
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния 5 в сте­пе­ни левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка минус 5 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка имеет вид:



26
Задание № 503
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния 2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка плюс 192=7 в сте­пе­ни левая круг­лая скоб­ка 1 минус x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 14 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка .


Ответ:

27
Задание № 292
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства 2 в сте­пе­ни левая круг­лая скоб­ка 3x плюс 1 пра­вая круг­лая скоб­ка минус 9 умно­жить на 4 в сте­пе­ни x плюс 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка \leqslant0.


Ответ:

28
Задание № 239
i

Пусть A= левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 15 плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 15 пра­вая круг­лая скоб­ка 2 минус 2} пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 7,5 пра­вая круг­лая скоб­ка 15 умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка 15 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1,5 пра­вая круг­лая скоб­ка 15 пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 4 в квад­ра­те 15.

Най­ди­те зна­че­ние вы­ра­же­ния 2A.


Ответ:

29
Задание № 618
i

Ко­рень урав­не­ния

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1,3 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 6 минус 5x, зна­ме­на­тель: 2x минус 7 конец дроби плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1,3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка 6 минус 5x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2x минус 7 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =0

(или сумма кор­ней, если их не­сколь­ко) при­над­ле­жит про­ме­жут­ку:



30
Задание № 266
i

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 15 конец дроби пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 ло­га­рифм по ос­но­ва­нию 9 левая круг­лая скоб­ка x плюс 15 пра­вая круг­лая скоб­ка боль­ше 0.


Ответ:

31
Задание № 17
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби минус t пра­вая круг­лая скоб­ка умно­жить на синус левая круг­лая скоб­ка t минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: синус левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби плюс t пра­вая круг­лая скоб­ка умно­жить на ко­си­нус левая круг­лая скоб­ка 5 Пи минус t пра­вая круг­лая скоб­ка конец дроби



32
Задание № 719
i

Най­ди­те зна­че­ние вы­ра­же­ния 5 минус \ctg82 гра­ду­сов30' плюс ко­рень из 2 минус ко­рень из 3 плюс ко­рень из 6 .


Ответ:

33
Задание № 490
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 4x= дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби .



34
Задание № 237
i

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния  синус x= дробь: чис­ли­тель: минус x, зна­ме­на­тель: 16 Пи конец дроби .


Ответ:

35
Задание № 419
i

Ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 8 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 27 минус x пра­вая круг­лая скоб­ка боль­ше 22 равно ...


Ответ:

36
Задание № 387
i

В ариф­ме­ти­че­ской про­грес­сии 110 чле­нов, их сумма равна 110, а сумма чле­нов с чет­ны­ми но­ме­ра­ми на 220 боль­ше суммы чле­нов с не­чет­ны­ми но­ме­ра­ми. Най­ди­те со­ро­ко­вой член этой про­грес­сии.


Ответ:

37
Задание № 447
i

Най­ди­те сумму целых зна­че­ний x, при­над­ле­жа­щих об­ла­сти опре­де­ле­ния функ­ции

y= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 15 плюс 2x минус x в квад­ра­те пра­вая круг­лая скоб­ка .


Ответ:

38
Задание № 18
i

Функ­ции за­да­ны фор­му­ла­ми:

1) y=|x| минус 1;2) y= минус 0,4x минус 1;3) y= дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби ;
4) y= ло­га­рифм по ос­но­ва­нию 2 x;5) y=2 в сте­пе­ни x .

 

Вы­бе­ри­те функ­цию, гра­фик ко­то­рой имеет с гра­фи­ком функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка (см. рис.), за­дан­ной на про­ме­жут­ке [−5; 6], наи­боль­шее ко­ли­че­ство точек пе­ре­се­че­ния.



39
Задание № 9
i

В рам­ках акции «Книги  — детям» школа по­лу­чи­ла не­ко­то­рое ко­ли­че­ство книг, рас­пре­де­ле­ние ко­то­рых по руб­ри­кам по­ка­за­но на диа­грам­ме: «І»  — учеб­ни­ки и учеб­ные по­со­бия, «ІІ»  — ме­то­ди­че­ские по­со­бия, «ІІІ»  — на­уч­но-по­пу­ляр­ная ли­те­ра­ту­ра, «ІV»  — ху­до­же­ствен­ная ли­те­ра­ту­ра (см. рис.). Какое ко­ли­че­ство учеб­ни­ков и учеб­ных по­со­бий по­сту­пи­ло в школу, если книг на­уч­но-по­пу­ляр­ной те­ма­ти­ки и ме­то­ди­че­ских по­со­бий было 396?



40
Задание № 413
i

По двум пер­пен­ди­ку­ляр­ным пря­мым, ко­то­рые пе­ре­се­ка­ют­ся в точке O, дви­жут­ся две точки M1 и M2 по на­прав­ле­нию к точке O со ско­ро­стя­ми 1  дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби и 2  дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби со­от­вет­ствен­но. До­стиг­нув точки O, они про­дол­жа­ют свое дви­же­ние. В пер­во­на­чаль­ный мо­мент вре­ме­ни M1O = 3 м, M2O = 11 м. Через сколь­ко се­кунд рас­сто­я­ние между точ­ка­ми M1 и M2 будет ми­ни­маль­ным?


Ответ:

41
Задание № 704
i

Из­вест­но, что наи­мень­шее зна­че­ние функ­ции, за­дан­ной фор­му­лой y  =  x2 + 12x + c, равно −11. Тогда зна­че­ние c равно:



42
Задание № 567
i

Из го­ро­да А в город В, рас­сто­я­ние между ко­то­ры­ми 100 км, од­но­вре­мен­но вы­ез­жа­ют два ав­то­мо­би­ля. Ско­рость пер­во­го ав­то­мо­би­ля на 40 км/ч боль­ше ско­ро­сти вто­ро­го, но он де­ла­ет в пути оста­нов­ку на 40 мин. Най­ди­те наи­боль­шее зна­че­ние ско­ро­сти (в км/ч) пер­во­го ав­то­мо­би­ля, при дви­же­нии с ко­то­рой он при­бу­дет в В не позже вто­ро­го.


Ответ:

43
Задание № 187
i

Длины ка­те­тов пря­мо­уголь­но­го тре­уголь­ни­ка яв­ля­ют­ся кор­ня­ми урав­не­ния x2 − 9x + 12  =  0. Най­ди­те пло­щадь тре­уголь­ни­ка.



44
Задание № 259
i

Для по­крас­ки стен общей пло­ща­дью 175 м2 пла­ни­ру­ет­ся за­куп­ка крас­ки. Объем и сто­и­мость банок с крас­кой при­ве­де­ны в таб­ли­це.

 

Объем банки

(в лит­рах)

Сто­и­мость банки с крас­кой

(в руб­лях)

2,575 000
10270 000

 

Какую ми­ни­маль­ную сумму (в руб­лях) по­тра­тят на по­куп­ку не­об­хо­ди­мо­го ко­ли­че­ства крас­ки, если ее рас­ход со­став­ля­ет 0,2 л/м2?


Ответ:

45
Задание № 662
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­же­ны фи­гу­ры, сим­мет­рич­ные от­но­си­тель­но пря­мой l.

1)

2)

3)

4)

5)


Завершить работу, свериться с ответами, увидеть решения.